文章目录
  1. 1. 《推荐系统实战》读书笔记
    1. 1.1. 第一章 好的推荐系统
    2. 1.2. 第3章 推荐系统冷启动问题
    3. 1.3. 参考

《推荐系统实战》读书笔记

第一章 好的推荐系统

你需要的是一个自动化的工具,它可以分析你的历史兴趣,从庞大的电 6 影库中找到几部符合你兴趣的电影供你选择。这个工具就是个性化推荐系统。

随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载(informationoverload)的时代。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:作为信息消费者,如何从大量信息中找到自己感兴趣的信息是一件非常困难的事情;作为信息生产者, 如何让自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决这一矛盾的重要工具。推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己 有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢。

众所周知,为了解决信息过载的问题,已经有无数科学家和工程师提出了很多天才的解决方案,其中代表性的解决方案是分类目录和搜索引擎。而这两种解决方案分别催生了互联网领域的两家著名公司——雅虎和谷歌。

推荐系统不需要用户提供明确的需求,而是通过分析用户的历史行为给用户的兴趣建模,从而主动给用户推荐能够满足他们兴趣和需求的信息。因此,从某种意义上说, 推荐系统和搜索引擎对于用户来说是两个互补的工具。搜索引擎满足了用户有明确目的时的主动查找需求,而推荐系统能够在用户没有明确目的的时候帮助他们发现感兴趣的新内容。

推荐系统通过发掘用户的行为,找到用户的个性化需求,从而将长尾商品准确地推荐给需要它的用户,帮助用户发现那些他们感兴趣但很难发现的商品。

们可以发现推荐系统就是自动联系用户和物品的一种工具,它能够在信息过载的环境中帮助用户发现令他们感兴趣的信息,也能将信息推送给对它们感兴趣的用户。

尽管不同的网站使用不同的推荐系统技术,但总地来说,几乎所有的推荐系统应用都是由前台的展示页面、后台的日志系统以及推荐算法系统3部分构成的。

一个完整的推荐系统一般存在3个参与方用户、物品提供者和提供推荐系统的网站。

推荐系统的参与者

好的推荐系统设计,能够让推荐系统本身收集到高质量的用户反馈,不断完善推荐的质量,增加用户和网站的交互,提高网站的收入。因此在评测一个推荐算法时,需要同时考虑三方的利益,一个好的推荐系统是能够令三方共赢的系统。

好的推荐系统不仅仅能够准确预测用户的行为,而且能够扩展用户的视野,帮助用户发现那些他们可能会感兴趣,但却不那么容易发现的东西。同时,推荐系统还要能够帮助商家将那些被埋没在长尾中的好商品介绍给可能会对它们感兴趣的用户。这也正是《长尾理论》的作者在书中不遗余力介绍推荐系统的原因。

在推荐系统中,主要有3种评测推荐效果的实验方法,即离线实验(offline experiment)、用户调查(user study)和在线实验(online experiment)。

  1. 离线实验

离线实验的方法一般由如下几个步骤构成:
(1) 通过日志系统获得用户行为数据,并按照一定格式生成一个标准的数据集;
(2) 将数据集按照一定的规则分成训练集和测试集;
(3) 在训练集上训练用户兴趣模型,在测试集上进行预测;
(4) 通过事先定义的离线指标评测算法在测试集上的预测结果。

第3章 推荐系统冷启动问题

参考

  1. 读书笔记 |《推荐系统实践》- 个性化推荐系统总结
  2. 推荐系统实践 (豆瓣)_豆瓣读书
  3. 推荐系统实践 - Infaraway - 博客园
  4. 《推荐系统实践》—— 读后总结
文章目录
  1. 1. 《推荐系统实战》读书笔记
    1. 1.1. 第一章 好的推荐系统
    2. 1.2. 第3章 推荐系统冷启动问题
    3. 1.3. 参考